Abstract

In order to confirm qualitatively that the experimentally observed, unusual flutter phenomenon for a high-aspect-ratio (non-tailored) forward swept wing model is indeed shock-stall flutter, the aeroelastic response calculation of a two-dimensional airfoil whose vibration characteristics are similar to those of the typical section of a forward swept wing, has been performed by solving the compressible Navier-Stokes equations. By examination of the flow pattern, pressure distribution and the behavior of the unsteady aerodynamic forces during the diverging oscillation of the airfoil, it is concluded that (i) this is a shock-stall flutter, in which the large-scale shock-induced flow separation plays a dominant role and (ii) there is a mechanism of energy input into the elastic system of the airfoil, leading to nearly a single-degree-of-freedom flutter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call