Abstract

Abstract The Xiangshan uranium deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of our study is to obtain a better understanding of rock deformation and dilation associated with mineralization, to predict the most favorable locations of mineralization, and to assist with future mineral exploration in this deposit. On the basis of geological and structural data from previous studies, we have constructed a coupled deformation and fluid flow numerical model and simulated the faulting deformation and major mechanical factors controlling mineralization in the deposit. Particular attention has been paid to variations in regional stress, distributions of shear strain, volumetric strain and pore pressure. The relationship between the structural/faulting movement and mineralization is obtained through analyzing the deformation state of fault zones. The results suggest that the mineralization is related to volumetric strain, shear strain and pore pressures. The locations displaying all these factors represent the most favorable sites for mineralization. These model results are important for guiding the exploration of new uranium deposits in Xiangshan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.