Abstract

The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.