Abstract

A two-dimensional numerical model was developed to simulate relatively wide, shallow rivers with an erodible bed and banks composed of well-sorted, sandy materials. A moving boundary-fitted coordinate system was used to calculate water flow, bed change, and bank erosion. The cubic interpolated pseudoparticle method was used to calculate flow, which introduced little numerical diffusion. The sediment-transport equation for the streamline and transverse transport was used to estimate bed and bank evolution over time, while considering the secondary flow. Bank erosion was simulated when the gradient in the cross-sectional direction of the banks was steeper than the submerged angle of repose because of bed erosion near the banks. The numerical model reproduced the features of central bars well, such as bar growth, channel widening due to divergence of the flow around the bars, scour holes at the lee of the bars, and the increase of bar size with time. These features were in accordance with the observations for laboratory experiments. It also reproduced the features of braided rivers, such as the generation of new channels and abandonment of old channels, the bifurcation and confluence of channels, and the lateral migration of the channels. The model showed that the sediment discharge rate fluctuated with time, one of the dynamic features observed in braided channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.