Abstract

The rays will propagate along a curved path determined by the Fermat principle in medium with inhomogeneous refractive index distribution. To avoid the complicated computation of ray trajectories, a finite element method is extended to solve the radiative transfer problem in a one-dimensional absorbing-emitting semitransparent spherical graded index medium. A problem of radiative transfer inside a semitransparent spherical graded index medium is taken as an example to verify the method. The predicted temperature distributions are determined by the proposed method, and are compared with the results available in references. The results show that finite element method can predict the radiative heat transfer in one-dimensional absorbing-emitting semitransparent spherical graded index medium accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.