Abstract

This article deals with the numerical approximation of Markovian backward stochastic differential equations (BSDEs) with generators of quadratic growth with respect to $z$ and bounded terminal conditions. We first study a slight modification of the classical dynamic programming equation arising from the time-discretization of BSDEs. By using a linearization argument and BMO martingales tools, we obtain a comparison theorem, a priori estimates and stability results for the solution of this scheme. Then we provide a control on the time-discretization error of order $\frac{1}{2}-\varepsilon$ for all $\varepsilon>0$. In the last part, we give a fully implementable algorithm for quadratic BSDEs based on quantization and illustrate our convergence results with numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.