Abstract

Abstract In this paper, a three-dimensional model of pulsatile blood flow througth a vessel with an asymmetric stenosis is developed to numerically study the hemodynamics circumstance under EECP (Enhanced External Counter Pul- sation). The governing equations are the usual Navier-Stokes equations for unsteady elliptic flows, and are numerically solved by using finite volume method. The numerical computing is based on the animal experiment. The blood flow rate curves in a cadiac cycle pre-EECP and post-EECP are detected in a pig's carotid respectively, the counterpulsation pressure is 0.03MPa. The blood flow rate curves are transformed to blood velocity distributions along the arterial diameter by using the Womersley arithmetic. And the Womersley velocity profiles are used as inflow boundary conditions to simulate the whole hemodynamics circumstance inside the 3-dimensional artery model. The computational results show that when EECP is applied, the blood flow rate and the wall shear stress level of the artery are increased in a cadiac cycle, as well as the pulsatile character of blood flow and wall shear stress. Which are possibly the hemodynamic actors that lead to the improving of the endothelial function which is thought to be straightly relating to the atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call