Abstract

The material point method (MPM) was used to numerically model pressure-driven flow of adhesive into hybrid poplar wood. The cellular structure of the hybrid poplar was discretized in an MPM model by converting X-ray computed tomography (XCT) voxels from 3D scans of actual wood–adhesive bond lines into material points in the model. In the MPM model, a slab of adhesive between two wood adherends was forced into the modeled wood structure. The wood material was modeled as a rigid material and the adhesive as a compressible, non-Newtonian fluid. MPM is well suited for these simulations because it can handle the large deformation of the adhesive fluid as well as adhesive–wood contact. The MPM fluid model with contact was verified by 2D simulations of a geometry with a known analytical solution using the same parameters and resolution as the full 3D simulations. Multiple 3D simulations were run, and the modeled adhesive penetration at the end of the simulations was compared to experimental penetration observations in the source XCT data. The simulation results correlated well with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.