Abstract

This article presents a numerical study on the effect of pressure on the gasification performance of an entrained flow tubular gasifier for Australian and Indian coals. Gasification using a substoichiometric amount of air, with or without steam addition, is considered. The model takes into account phenomena such as devolatilization, combustion of volatiles, char combustion, and gasification. Continuous-phase conservation equations are solved in an Eulerian frame and those of the particle phase are solved in a Lagrangian frame, with coupling between the two phases carried out through interactive source terms. The numerical results obtained show that the gasification performance increases for both types of coal when the pressure is increased. Locations of devolatilization, combustion, and gasification zones inside the gasifier are analyzed using the temperature plots, devolatilization plots, and mass depletion histories of coal particles. With increase in pressure, the temperature inside the gasifier increases and also the position of maximum temperature shifts upstream. For the high-ash Indian coal, the combustion of volatiles and char and the gasification process are relatively slower than those for the low-ash Australian coal. The mole fractions of CO and H2 are found to increase with increase in pressure, in all the cases considered. Further, the effects of pressure on overall gasification performance parameters such as carbon conversion, product gas heating value, and cold gas efficiency are also discussed for both types of coals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.