Abstract

Computer simulations of polymer foaming processes in extrusion flow have been carried out in order to improve current understanding of viscoelasticity and bubble growth effects on die-swelling in the production of polymer foam. The linear and non-linear viscoelastic materials functions of a commercial low density polyethylene (LDPE) melt have been extracted by fitting its rheometric data with constitutive models including a simple viscoelastic model (SVM), the exponential Phan-Thien–Tanner (EPTT) model and the double convected pom–pom (DCPP) model. Simulations of LDPE melt under extrusion flow without foaming show that the predictions of the die-swell by the SVM are in reasonably good agreement with the results obtained from the EPTT and DCPP models. By comparison of the simulation results of LDPE foaming in extrusion flow using the Bird–Carreau model and the SVM, a cooperative effect of polymer viscoelasticity and bubble growth on the die-swell has been quantified. The numerical results also show that the density of polymeric foam decreases significantly with the increasing concentration of foaming agent, and that the combination of the SVM and bubble growth model can account for some essential physics of polymer foaming process in extrusion flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.