Abstract
This paper presents a comprehensive study on pipeline scour and sedimentation phenomena using an open-source multiphase Computational Fluid Dynamics (CFD) model. The research focuses on understanding the complex interactions between fluid flow, sediment transport, and scour formation around submerged pipelines. The proposed analysis aims to enhance the understanding of scour development and sedimentation deposition, which is crucial for the design, operation, and maintenance of various engineering structures, including offshore pipelines and underwater infrastructure. The results show that the model exhibits the ability to compute sediment transport without depending on traditional assumptions related to bed-load and suspended-load layers. The simulation results affirm the model's proficiency in replicating the underlying mechanisms accountable for the onset of these processes, notably seepage flow and piping. Furthermore, this model can successfully depict the vortex phenomenon, which promotes the accumulation of sediment around the pipe. This phenomenon arises from the contrast in pressure between the centre of the vortex and the pressure exerted on the sediment beneath it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.