Abstract

Numerical approaches can provide useful information about the microscopic processes underlying photocurrent generation in organic solar cells (OSCs). Among them, the Kinetic Monte Carlo (KMC) method is conceptually the simplest, but computationally the most intensive. A less demanding alternative is potentially represented by so-called Master Equation (ME) approaches, where the equations describing particle dynamics rely on the mean-field approximation and their solution is attained numerically, rather than stochastically. The description of charge separation dynamics, the treatment of electrostatic interactions and numerical stability are some of the key issues which have prevented the application of these methods to OSC modelling, despite of their successes in the study of charge transport in disordered system. Here we describe a three-dimensional ME approach to photocurrent generation in OSCs which attempts to deal with these issues. The reliability of the proposed method is tested against reference KMC simulations on bilayer heterojunction solar cells. Comparison of the current-voltage curves shows that the model well approximates the exact result for most devices. The largest deviations in current densities are mainly due to the adoption of the mean-field approximation for electrostatic interactions. The presence of deep traps, in devices characterized by strong energy disorder, may also affect result quality. Comparison of the simulation times reveals that the ME algorithm runs, on the average, one order of magnitude faster than KMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.