Abstract

Influence of the magnet position on the determination of the distribution of the critical current density in a high-temperature superconducting (HTS) thin film has been investigated numerically. For this purpose, a numerical code has been developed for analyzing the shielding current density in a HTS sample. By using the code, the permanent magnet method is reproduced. The results of computations show that, even if the center of the permanent magnet is located near the film edge, the maximum repulsive force is roughly proportional to the critical current density. This means that the distribution of the critical current density in the HTS film can be estimated from the proportionality constants determined by using the relations between the maximum repulsive force and the critical current density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.