Abstract

This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, including rolling, heeling, and trimming, on passenger evacuation times. Based on the maritimeEXODUS tool, simulations were conducted to replicate the evacuation process in these unique scenarios. The results of the simulations highlight a significant correlation between the cruise ship’s motion state and evacuation time. Specifically, under inclination conditions, evacuation times were extended, with bow trimming leading to a notable increase in the time. This study underscores the importance of considering the motion state of a cruise ship in evacuation procedures, confirming the validity of the numerical simulation for studying large-scale cruise ship evacuations under inclination and rolling conditions. The findings contribute valuable insights for enhancing safety protocols and optimizing ship arrangements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call