Abstract

Summary The main features of a mathematical model for the simulation of pantograph-catenary dynamic interaction are presented and, in particular, some aspects related to the catenary and pantograph schematisation are outlined. The model enables to investigate the behaviour of the system in a relatively large frequency range (up to 100 Hz), due to the inclusion of the bending modes of the collector head. In order to simulate the contact between wire and collector, a procedure based on the penalty method is adopted, and it is shown by means of a numerical test case that the method reproduces the constraint acting at the pantograph-catenary interface over a wide frequency range with high accuracy, provided that suitable values are given to the contact parameters. The problem of minimising the numerical disturbances due to the discretisation of the contact wire is also discussed, showing that the entity of these disturbances can be reduced to acceptable values by adopting a proper discretisation of the contact wire, so that no post-filtering of simulation results is required. Applications to some specific aspects of current collection are presented, and comparisons with available experimental data from line tests are shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call