Abstract

The present work describes the response of a heated solid surface during nucleation, growth and departure of a single bubble. Two dimensional, axisymmetric, finite difference schemes are used to solve the governing equations in the liquid, vapor and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases in order to match temperatures and heat fluxes. Time and space invariant heat fluxes are supplied at the solid base and calculations are carried out for solids with different thermo-physical properties and thicknesses. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods as the bubble base first expands outwards then contracts inwards before departure. The results show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting time and wall superheat is found to agree well with the correlations based on experimental data reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.