Abstract

A numerical methodology has been developed to solve a non-premixed diffusion flame under natural convection and applied to the calculation of the liquid sodium pool combustion experiment at various pool temperatures and oxygen concentrations. The computations reproduce the experimental observations concerning burning rate, flame temperature and flame height, consistently. The aerosol release rates are also in good agreement with the measurement. Dominant mechanisms of the mass and heat transfer are identified through the numerical simulation. An intrinsic feature is that the liquid sodium pool combustion is self-limited and negative feedback mechanism is at work Interaction among the thermal-hydraulics, chemical reaction and aerosol behavior plays an important role in the phenomena and it has been successfully analyzed by the numerical simulation. The present method can be used to understand sodium combustion phenomena and applied to the modeling of sodium pool combustion for safety analyses of liquid metal fast reactors. The numerical simulation is a useful tool because it can easily employ various conditions by changing parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call