Abstract

This paper focuses on the studying on some flow problems of nonlinear based on the Element Free Galerkin method. First the Navier-Stokes equation is discretized with the Galerkin method. The inertial term in the equation is discretized with the method of the speed term and direct deduction respectively. And the penalty function method is used to deal with the pressure and the essential boundary condition in the equation, and the discretization of two-dimensional N-S equation based on the EFG method is established. Then the flow problem of stationary nonlinear is studied. The flow problem of water in the rectangular domain squeezed by the two plates distributed above and below the calculated domain is studied with the method of EFG. The accuracy of the direct linear alternating interation method is shown by contrast with the analytical solution. Then the flow problem of unsteady nonlinear is studied. The θ-weighted method is used to discrete the time term of the N-S equation and the unsteady nonlinear solution matrix of EFG is established. The flow problem of flow around the square column is studied with the method of EFG and the flows under a series of low Reynolds are stimulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.