Abstract
Time-dependent Hartree-Fock theory has been used to study the electronic optical response of a series of linear polyene cations (+1 and +2) in strong laser fields. The interaction of ethylene, butadiene, and hexatriene, with pulsed and CW fields corresponding to 8.75 x 10(13) W/cm(2) and 760 nm, have been calculated using the 6-31G(d,p) basis set. Nonadiabatic processes including nonlinear response of the dipole moment to the field and non-resonant energy deposition into excited states were more pronounced for the monocations in comparison with dications. For a given charge state and geometry, the nonadiabatic effects in the charge distribution and instantaneous dipole increased with the length of the polyene. For pulsed fields, the instantaneous dipole continued to oscillate after the field returned to zero and corresponded to a non-resonant electronic excitation involving primarily the lowest electronic transition. For a given molecule and fixed charge state, the degree of nonadiabatic coupling and excitation was greater for geometries with lower excitation energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.