Abstract

AbstractThe pinch off of an inviscid fluid column is described using a potential flow model with capillary forces. The interface velocity is obtained via a Galerkin boundary integral method for the 3D axisymmetric Laplace equation, whereas the interface location and the velocity potential on the free boundary are both approximated using level set techniques on a fixed domain. The algorithm is validated computing the Raleigh‐Taylor instability for liquid columns which provides an analytical solution for short times. The simulations show the time evolution of the fluid tube and the algorithm is capable of handling pinch‐off and after pinch‐off events. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call