Abstract

In this paper, a series of numerical simulations for natural convection of water near its maximum-density around a cylinder inside a concentric triangular enclosure were conducted using finite volume method. The effects of the density inversion parameter, the aspect ratio, the Rayleigh number and the inclination angle on natural convection were discussed. Furthermore, the flow and temperature fields, the local and average Nusselt numbers at different parameters were obtained and analyzed. The results show that the flow pattern and temperature distribution are unique for various density inversion parameters and inclination angles. The density inversion parameter, the aspect ratio, the Rayleigh number all have significant effects on the overall heat transfer rates, except for the inclination angle. The present results can also contribute further information on the natural convection of non-Boussinesq fluid in enclosures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call