Abstract
Simulation of multilayer deposition of dry aerosol particles in turbulent flows has gained a growing interest in various industrial and research applications. The multilayer deposition of carbonaceous aerosol particles in a turbulent channel flow obstructed by a succession of square ribs is here numerically investigated. The multilayer particle bed growth on the various wall surfaces affects the air flow, which in turn affects the overall deposition rate. An iterative numerical procedure is therefore suggested to simulate the evolution of the graphite layer. The iterative process used to reproduce the layer build-up is decomposed as follows: Reynolds-Avergared Navier Stokes is employed to generate the flow field. The turbulent dispersion of the particles is reproduced through the use of a continuous random walk model. After statistically sufficient deposition of particulate matter, the layer build-up is computed using mechanics of dry granular material. The layer build-up model shows good agreement with data obtained from experimental tests carried out on-site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.