Abstract

Liquid-vapor separation is an advanced technology recently developed enabling significant further heat transfer enhancement for condensers. This paper reports a distributed parameter model, using the ε-NTU method, to numerically simulate heat transfer performance of multi-pass parallel flow condensers with liquid-vapor separation (referred to as MPFCs-LS). For achieving higher accurate results and lower computational time, a segment self-subdivision method is used to locate the positions of onset and completion of condensation. Furthermore genetic algorithm is adopted to determine the refrigerant flow rates through tubes in a flow pass. Relevant empirical correlations are selected for heat transfer and frictional pressure drop in different flow regimes during condensation in microfin tubes. The predictions of the model agree well with the experimental data within ±20%. The model and numerical methods developed in this work for MPFCs-LS are of important value in design and performance optimization of these new advanced condensers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.