Abstract
In this paper, the multi-carrier microwave breakdown in air-SF6 mixtures is analyzed with the spectral-element time-domain method. In this process, a three-dimensional multi-physics model coupling Maxwell's equations with electron fluid equations is established. The tail-erosion and frequency shift phenomenon caused by multi-carrier microwave breakdown in different proportions of air-SF6 mixtures can be observed. Numerical results demonstrate that multi-carriers will make the wireless communication system sensitive to microwave breakdown. On the other hand, the different proportions of air-SF6 mixtures can obviously improve the breakdown threshold to inhibit the multi-carrier microwave breakdown, which is favorable to the propagation of multi-carrier microwaves in air. Meanwhile, increasing the pressure can suppress the frequency shift phenomenon, and the proportion of different SF6 in the mixed gas has little effect on the frequency shift of the transmitted wave. Our research provides theoretical guidance for comprehensively exploring the characteristics and physical mechanism of multi-carrier microwave breakdown in air-SF6 mixtures and is helpful for protection of microwave devices and plasma application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.