Abstract

In this study, mixed convection heat transfer of water-Cu nanofluid in a double lid-driven cavity has been analyzed by lattice Boltzmann method. The double lid-driven are insulated and the side walls have sinusoidal temperature distribution. Simulations have been carried out at constant Grashof number 100, the Richardson numbers of 0.01, 0.1,1,10 and 100, temperature phase deviation of 0, π/4, π/2, 3π/4 and π, the solid volume fraction from zero to 0.06 and the Prandtl number of 6.57. The thermal modeling of passive scalar is applied and two separate distribution functions for the flow and temperature fields are considered. In order to calculate the thermal conductivity coefficient of nanofluid, constant and variable properties models are used. The results showed that in high Richardson numbers, the effect of the thermal phase deviation changes on the flow pattern is evident and in low Richardson numbers, the phase deviation changes do not affect the flow pattern. In all thermal phase deviations by reducing the Richardson number, the Nusselt number increases and thus the heat transfer increases. Also the average Nusselt number obtained for the constant properties model is higher compared with that of variable properties model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call