Abstract

A multiphase cellular automaton model was developed to simulate microstructure evolution of near eutectic spheroidal graphite cast iron (SGI) during its solidification process, and both dendritic austenite and spheroidal graphite growth models were adopted. To deduce the mesh anisotropy of cellular automaton method, the composition averaging and geometrical parameter were introduced to simulate the spheroidal graphite growth. Solute balance method and decentered square algorithms were employed to simulate austenite dendrites growth with different crystallographic orientations. The simulated results indicate that the graphite nodule grows in a spherical morphology when the surrounding environment of a single graphite nodule is same. However, for two adjacent graphite nodules, the environment is different. The higher the carbon concentration, the faster the growth of graphite. By comparison with experimental results, it is found that the microstructure evolution of near eutectic spheroidal graphite cast iron during solidification process can be reproduced quantitatively by numerical simulation with this model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call