Abstract

In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.