Abstract

This paper studies flow characteristics and their effect on local mass transfer rate to a flat plate electrode in a FM01-LC electrochemical reactor. 3D reactor simulations under limiting current and turbulent flow conditions were performed using potassium ferro-ferricyanide electrochemical system with sodium sulfate as supporting electrolyte. The model consists of mass-transport equations coupled to hydrodynamic solution obtained from Reynolds-averaged Navier–Stokes equations using standard k–ɛ turbulence model, where the average velocity field, the turbulence level given by the eddy kinetic energy and the turbulent viscosity of the hydrodynamic calculation were used to evaluate the convection, turbulent diffusion and the concentration wall function. The turbulent mass diffusivity was evaluated by Kays–Crawford equation using heat and mass transfer analogies, while wall functions, for mass transport, were adapted from Launder–Spalding equations. Simulation results describe main flow properties, concentration profiles throughout the entire volume of the reactor and local diffusion flux over the electrode. Overall mass transfer coefficients estimated by simulation, without fitting parameters, agree closely with experimental coefficients determined from limiting current measurements (1.85% average error) for Re between 187 and 1407.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call