Abstract

A two-dimensional magnetohydrodynamic (MHD) simulation of an axial magnetic compression on a field-reversed configuration (FRC) plasma is carried out for the parameter range of a corresponding experiment conducted on the FRC Injection Experiment (FIX) [S. Okada et al., 17th IAEA Fusion Energy Conference 1998 (International Atomic Energy Agency, Vienna) (in press)]. The simulation results show that during the initial stage of the magnetic compression the front part of the FRC plasma is mainly compressed radially, and that after this stage, the compression is primarily axial. Of particular interest is expected that the closed magnetic flux surfaces of the FRC can be retained without any degradation during the magnetic compression process. Further, it is observed in the simulation that the axial magnetic compression enables a transition of the MHD equilibrium from a long and thin to a short and fat FRC. The effects of this magnetic compression on FRC plasmas are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call