Abstract

Micro-macrosegregation calculations have been performed for a rectangular cavity containing either a Pb-48 wt pct Sn alloy or a Sn-5 wt pct Pb alloy. The numerical results calculated with a finite volume method (FVM) and a finite element method (FEM) are compared with experimental results previously obtained by Hebditch and Hunt. The two methods are based on the same average conservation equations governing heat and mass transfer and the same assumptions: lever rule, equal and constant density of the solid and liquid phases (except in the buoyancy term), permeability of the mushy zone given by the Carman-Kozeny relation, and no transport of the solid phase. Although the same parameters are used in both calculations, small differences are observed as a result of the different formulations. In particular, the instabilities appearing in the mushy zone (channels) of the Sn-5 wt pct Pb alloy are more pronounced with the FVM formulation as compared with FEM, whereas the opposite trend is observed for the Pb-48 wt pct Sn alloy. Nevertheless, the final segregation maps at the end of solidification compare fairly well with the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.