Abstract

The energy/heat and diffusion/mass flux occurred due to chemical potential and temperature gradient, respectively have worth in the areas of electrical power generation, solar power technology, chemical engineering, petrology, nuclear waste disposal, hydrology, high temperature processes and geoscience. In connection to this, Soret and Dufour effects on steady, incompressible, laminar flow of non-Newtonian Casson liquid over a stretching sheet in a porous medium under local thermal non-equilibrium (LTNE) conditions have been theoretically investigated in the presence of Stefan blowing and magnetic effects. The energy equations are formulated by using the LTNE, which establishes the separate temperature profiles for both fluid and solid phases. The governing equations for the flow arguments are reduced by selecting suitable similarity transformations, which are then numerically solved using the traditional Runge-Kutta- 4 (RK-4) with shooting method. The flow features in reply to the impact of the emerging parameters are inspected in detail graphically. The significant outcomes of the current study are that, the rise in values of magnetic and porosity parameters decays the velocity but improves the heat transfer. An upsurge in Dufour number decreases the heat transfer rate of both solid and liquid phases. The upsurge in Soret number diminutions the mass transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.