Abstract

Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state. The aim of this paper is a numerical investigation of the cryogenic cavitation flow characteristics, considering variable thermodynamic properties of liquid nitrogen and numerical simulation liquid nitrogen around hydrofoil cryogenic cavitation flow characteristics. Based on homogeneous flow model and Zwart cavitation model, calculates hydrofoil isothermal and cryogenic cavitation in liquid nitrogen steadily, updates the evaporation and condensation coefficients of Zwart cavitation model, gives the hydrofoil surface pressure profile, temperature depression and distribution of cavitation intensity, contrasts the isothermal and cryogenic cavitation flow characteristics. Numerical results show that thermodynamics effect in cryogenic liquid cavitation significantly. Meanwhile, the hydrofoil surface pressure and temperature numerical results with experimental data and more Hord compared to verify the validity of the numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.