Abstract
The evaporation of vapor bubbles inside a microchannel is important to realize a device with high cooling performance. The liquid film formed on the solid surface is essential for evaporative heat transfer from solid to fluid; its formation process and heat transfer characteristics need to be investigated. The expansion process of a single vapor bubble via evaporative heat transfer in microchannels was evaluated via a numerical simulation in this study. In the calculation model, the working fluid used was saturated FC-72 at 0.1013 MPa and the channel diameter was 200 µm. The superheat of the initial temperature field and wall were considered as parameters. To evaluate the heat transfer characteristics, the time variation of liquid film thickness was evaluated. The averaged liquid film thickness had a correlation with the capillary number. Additionally, the dominant heat transfer mode was estimated by decomposing the heat transfer rate into the heat-transfer rate through the liquid film, rear edge, and wake. When the superheat was low, the heat transfer mostly occurred via liquid film evaporation; the heat flux through the liquid film could be predicted using the liquid film thickness. On the other hand, in cases of higher superheat, owing to rapid expansion of the vapor bubble, no evaporative heat transfer occurred through the liquid film around the bubble head. It could be inferred from this study that the relationship between the thickness of the thermal boundary layer of the bubble and liquid film thickness is important for predicting the cooling effect of this phenomena. When the vapor bubble grows in the high superheat liquid, the rapid growth makes the liquid film thick, and the thick liquid film prevents the heat transfer between the liquid–vapor interface and heated wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.