Abstract

The interaction between light and silver nanowires (Ag NWs) in a thin film is simulated by solving Maxwell's equations numerically. Time-harmonic inverse iterative method is implemented to overcome the problem of negative permittivity of silver, which makes the classical finite-difference time-domain iteration unstable. The method is validated by showing the correspondence between the plasmonic resonance of an Ag NW from a two dimensional simulation and the analytical solution. In agreement with previous experimental studies, the simulation results show that the transmissivity of the Ag NW films is higher than expected from the geometric aperture. The cause of this phenomenon is studied using TE/TM modes analysis for Ag NW films with different surface coverage of parallel-aligned Ag NWs. Furthermore, 3D simulation of Ag NW films with randomly arranged Ag NWs is performed by parallel computation on high performance computers. A binder layer is taken into account for a preliminary comparison between the simulation and experimental results. The agreements and disagreements between the simulated and measured spectra are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.