Abstract
Recent studies suggest that flexural stresses induced during the opening phase may be responsible for much of the mechanical failures of bioprosthetic heart valves. Sharp leaflet bending is promoted by the mounting of valves on rigid stents that do not mimic the systolic expansion of the natural aortic root. We, therefore, hypothesized that flexural stresses could be significantly reduced by incorporating a flexible or expansile supporting stent into the valve design. Using our own non-linear finite element code (INDAP) and the pre- and post-processor modules of a commercial finite element package (PATRAN), we simulated the opening and closing behaviour a trileaflet bovine pericardial valve. The leaflets of this valve were assumed to be of uniform thickness, with a non-linear elastic behaviour adapted from experimentally obtained bending stiffness data. Our simulations have shown that during maximal systolic valve opening, sharp curvatures are induced in the leaflets near their commissural attachment to the supporting stent. These areas of sharp flexure experience compressive stresses of similar magnitude to the tensile stresses induced in the leaflets during valve closure. By incorporating a stent with posts that pivot about their base, such that a 10% expansion at the commissures is realized, we were able to reduce the compressive commissural stressing from 250 to 150 kPa. This was a reduction of 40%. Conversely, a simple pliable stent with stent posts that deflect inward and outward under load did not achieve a significant reduction of compressive stresses. This numerical analysis, therefore, supports the theory that (i) high flexural and compressive stresses exist at sites of sharp leaflet bending and may promote bioprosthetic valve failure, and (ii) that proper design of the supporting stent can significantly reduce such flexural stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.