Abstract

Laser-induced plasma is often produced in the presence of background gas, which causes some new physical processes. In this work, a two-dimensional axisymmetric radiation fluid dynamics model is used to numerically simulate the expansion process of plasma under different pressures and gases, in which the multiple interaction processes of diffusion, viscosity and heat conduction between the laser ablated target vapor and the background gas are further considered, and the spatio-temporal evolutions of plasma parameters (species number density, expansion velocity, size and electron temperature) as well as the emission spectra are obtained. The consistency between the actual and simulated spectra of aluminum plasma in 1 atm argon verifies the correctness of the model and the numerical simulation, thus providing a refinement analysis method for the basic research of plasma expansion in gases and the application of laser-induced breakdown spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.