Abstract

To verify the performance of longitudinal waves induced by laser phased arrays (LPA) for detection and quantitative evaluation in internal defects, the finite element method (FEM) is utilized to establish the models of LPA scanning processing. The interaction of longitudinal wave and internal defect is analyzed. Besides, the two components of the reflected longitudinal waves (the longitudinal wave component [Formula: see text] and the shear wave component [Formula: see text] are focused on the imaging of defects with the synthetic aperture focusing technique (SAFT) and total focusing method (TFM) algorithms. It shows that the imaging of internal sub-millimeter defect is obtained using the LPA. The defect size and location are simultaneously calculated, with the relative error being 6.7% and 2.9%, respectively. The proposed longitudinal wave-based LPA is a promising method for the imaging and evaluation of internal micro defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.