Abstract

Growing attention has been paid to nonthermal plasma treatment technology and its effects on the degradation of organic matter, especially for antibiotics. However, the majority of the conducted research has focused on the experimental results. Rare attempts were made to analyze the reaction mechanism at the microscopic level. In this paper, molecular dynamics simulation and reactive forcefields were used to investigate the reaction mechanism of different plasma particle interactions with azithromycin molecules. The simulation results indicated that the degradation of azithromycin was caused by the destruction of C-H and C-C bonds, followed by the formation of C=C and C=O bonds when reacted with the active particles. It was also found that the ability of degrading azithromycin varied among the different types of active particles. The oxygen atoms had the strongest ability to decompose the azithromycin molecule, with 38.61% of the C-H bonds broken as compared with other oxygenated species. The findings from this computational simulation could provide theoretical support and guidance for subsequent practical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.