Abstract

A procedure for simulating the injection of supercritical ethylene into nitrogen is used to investigate aspects of the injection of supercritical fuels, considered to be an enabling technology in the design of hydrocarbons-fueled scramjet engines. The method solves the compressible Navier-Stokes equations for an ethylene/nitrogen mixture, with the thermodynamic behavior of ethylene described using the Peng-Robinson equation of state. Homogeneous equilibrium and finite-rate phase-transition models are used to describe the growth of a condensed ethylene phase in several axisymmetric and three-dimensional injector nozzles. Predictions are compared with shadowgraph and direct-lighting imaging data, mass flow rate measurements, mole-fraction and temperature measurements in the jet mixing zone, and wall pressure distributions. Qualitative trends relating to jet structure, the appearance of a condensed phase, and the effects of back pressure and injectant temperature are in good agreement with experimental results but indicate the need for improved characterization of the nozzle flow before injection and the inclusion of a better turbulence model for the jet mixing zone. For conditions where both are applicable, a nucleation/ growth phase transition model provides a similar bulk fluid response as a homogeneous equilibrium model but also yields predictions of number density and average droplet size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.