Abstract

This paper presents a numerical investigation of water infiltration into a fine-grained reinforced soil wall using nonwoven geotextiles. A large-scale reinforced soil wall was constructed in the laboratory and subjected to water irrigation to impose a controlled infiltration. The structure was fully instrumented to measure changes in the volumetric water content and matric suction during irrigation. The numerical investigation was performed to provide insight into the overall infiltration process, with a particular focus on the hydraulic behavior at soil-geosynthetic interfaces that was not properly captured in the laboratory model. The numerical study includes capillary effects, the location of breakthrough along the reinforcement length and the effect of the presence of a wrap-around anchorage. In general, the numerical analyses were found to agree with the experimental results. The results indicate that the use of nonwoven geotextiles to reinforce fine-grained backfill retarded water flow into the subsequent layers so that the water did not break through uniformly along the length of the geotextile but rather infiltrated progressively. The study also demonstrated the significant contribution of the presence of a wraparound anchorage on the change in the water flow path toward the wall facing. The capillary effects on fine-grained backfill reinforced with geotextiles were found to be significantly affected by the heterogeneity in the porosity expected for compacted soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.