Abstract

The boundary-fitted grid method, which transforms a complicated computational domain into a rectangular domain, is applied for the moisture and solute transport problems in the unsaturated soil layer of an S-shaped model hillslope. In the transformed domain, the fundamental equations of moisture and solute transport (i.e. the Richards equation and the Fickian equation) can be easily discretized into the finite-difference form.For three types of rainfall pattern (a unit rainfall, two-unit successive rainfalls and two unit ranfalls with a lag between them), hydrographs of total (pre-event and event water) and event water discharges, contour lines of soil moisture, pressure and total hydraulic head distributions, and flow velocity vectors are compared. For a relatively thick soil layer or for a relatively light rainfall, the capillary fringe effect plays an important role, whereas for a relatively thin soil layer or for a relatively heavy rainfall, overland flow from a variable source area is superimposed on the capillary-fringe-type runoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.