Abstract

BackgroundOwing to the complexity and magnitude of functional forces transferred to the bone-implant interface, the mechanical strength of the interface is of great importance. The purpose of this study was to determine the intraosseous torsional shear strength of an osseointegrated oral implant using 3-D finite element (FE) stress analysis implemented by in vivo failure torque data of an implant.MethodsA Ø 3.5 mm × 12 mm ITI® hollow screw dental implant in a patient was subjected to torque failure test using a custom-made strain-gauged manual torque wrench connected to a data acquisition system. The 3-D FE model of the implant and peri-implant circumstances was constructed. The in vivo strain data was converted to torque units (N.cm) to involve in loading definition of FE analysis. Upon processing of the FE analysis, the shear stress of peri-implant bone was evaluated to assume torsional shear stress strength of the bone-implant interface.ResultsThe in vivo torque failure test yielded 5952 μstrains at custom-made manual torque wrench level and conversion of the strain data resulted in 750 N.cm. FE revealed that highest shear stress value in the trabecular bone, 121 MPa, was located at the first intimate contact with implant. Trabecular bone in contact with external surface of hollow implant body participated shear stress distribution, but not the bone resting inside of the hollow.ConclusionThe torsional strength of hollow-screw implants is basically provided by the marginal bone and the hollow part has negligible effect on interfacial shear strength.

Highlights

  • Owing to the complexity and magnitude of functional forces transferred to the bone-implant interface, the mechanical strength of the interface is of great importance

  • Commonly cited factors leading to implant failure are biological and biomechanical, but the initiation of marginal bone loss remains essentially unclear

  • Referring to rough and smooth implant surface border, the mean vertical and horizontal bone loss measured on digitized periapical radiograph using a software for image analysis (ImageJ 1.34n, NIH, USA) were 7.55 mm and 4.15 mm, respectively (Fig 2)

Read more

Summary

Introduction

Owing to the complexity and magnitude of functional forces transferred to the bone-implant interface, the mechanical strength of the interface is of great importance. The purpose of this study was to determine the intraosseous torsional shear strength of an osseointegrated oral implant using 3-D finite element (FE) stress analysis implemented by in vivo failure torque data of an implant. Commonly cited factors leading to implant failure are biological and biomechanical, but the initiation of marginal bone loss remains essentially unclear. Various treatment modalities [4,5,6,7] have been described to control (micro)damage of peri-implant tissues, the biological competence of the bone-implant interface is questionable, under fatigue-induced mechanical failures, where the interface stiffness plays a critical role

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.