Abstract
The simulated methods for ice accretion on two-dimensional airfoil surface are established completely under the Eulerian framework in supercooled large droplet (SLD) conditions. The two-dimensional code to solve the partial differential equations (PDEs) of droplet phase is derived to simulate the impingement characteristic of SLD. Also, several semi-empirical models which explain the droplet-wall interaction are compared and discussed to show respective features when simulating the splashing phenomenon. In particular, a new boundary condition for wall called penetrable wall for splashing droplet (PWSD) is proposed to deal with the impingement of SLD on solid surface, which efficiently improves the accuracy of simulation. Then the improved impingement characteristic of SLD is input into the extended mass and heat transfer model to simulate the ice growth on airfoil surface. The multistep advanced method is carried out to better match the physical phenomenon of ice growth. At last, the simulated results of critical parameters: local droplet collection efficiency and the height of ice growth are compared with the experimental data which verify the applicability of proposed models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.