Abstract

Abstract : The objective of this research is to conduct DNS studies of hypersonic boundary layer receptivity, transient growth and transition with surface roughness. The main approach is to use DNS as a research tool to study the boundary layer receptivity and transient-growth mechanisms in hypersonic flows, including the development of numerical algorithms and parallel computer codes of higher order numerical methods for the simulation of hypersonic flows with surface roughness of finite heights. During the three-year period, we have conducted DNS studies on the hypersonic boundary layer flows over flat plates and blunt cones. A new high-order cut-cell method has been developed for the numerical simulation of hypersonic boundary layer transition with finite height surface roughness. The method has been applied to the numerical simulations of two-dimensional hypersonic flows over a flat plate. Furthermore, the stabilization effect of the surface porous coating over a flat plate is extensively studied by series of numerical simulations. We also collaborate with Prof. Tumin in the University of Arizona to compare numerical and theoretical results on receptivity of a Mach 5.92 flow over a flat plate to wall blowing-suction, and to analyze the nonparallel flow effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call