Abstract

The hot dry rock (HDR) hydraulic fracturing is a complex physical process coupling the effects of seepage, stress, temperature, and damage. The high temperature and brittleness of the HDR leads to the great thermal stress, and the rock is possibly thermally damaged, thus promoting hydraulic fracture (HF) extension and significantly improving the permeability around the HF. In this paper, a thermo-hydro-mechanical-damage (THMD) coupling model is established based on elastic thermodynamics, Biot's classic seepage mechanics and mesoscopic damage mechanics, and its accuracy is evaluated through case study and verification with theoretical models and experiments. The evolution of multi-physics during hydraulic fracturing of HDR is studied, and the effects of rock thermophysical parameters, temperature difference, rock heterogeneity, Young's modulus, permeability, and injection rate on HF extension in the HDR are investigated. The results show that initially, due to the severe temperature variation near the borehole, the higher thermal expansion coefficient leads to the greater thermal tensile stress and facilitates rock damage, thus reducing the fracture pressure. The research results provide theoretical basis and technical support for fracturing design of geothermal system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call