Abstract

The hybrid nanofluid (HNF) flow consists of polymer/CNT matrix nanocomposite material (MNC) across coaxial cylinders is numerically described in this study. The HNF flow is inspected under the consequences of thermal radiation, exponential heat source/sink and viscous dissipation. The HNF is prepared by adding polymer/CNT MNC in water. MNCs are highly productive elements with unique designs and properties. The MNCs are widely used in biomedicine and electrical applications due to their exceptional thermophysical properties. Based on their exceptionally high electrical conductivity, CNT/polymer nanoparticles (NPs) are also utilized as shielding for electrostatic discharge and electromagnetic interference (EMI). The HNF flow is modeled with the help of energy, continuity, and momentum equations. MATLAB package bvp4c is used to numerically handle the modeled equations. It has been perceived that the intensifying numbers of polymer/CNT MNC will lessen the fluid velocity and temperature profile in cases of both nanofluid and HNF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call