Abstract

Development of an Advection Upstream Splitting Method (AUSM[Formula: see text]-up) scheme-based Unstructured Finite Volume (UFVM) solver for the simulation of two-dimensional axisymmetric/planar high speed compressible turbulent reacting shear layers is presented. The inviscid numerical flux is evaluated using AUSM[Formula: see text]-up upwind scheme. An eight-step hydrogen–oxygen finite rate chemistry model is used to model the development of chemical species in a supersonic reacting flow field. The chemical species terms are alone solved implicitly in this explicit flow solver by rescaling the equation in time. The turbulence modeling has been done using RNG-based [Formula: see text]–[Formula: see text] model. Three-stage Runge–Kutta method has been used for explicit time integration. The nonreacting two-dimensional Cartesian version of the same solver has been successfully validated against experimental and numerical results reported for the wall static pressure data in sonic slot injection to supersonic stream. Detailed validation studies for reacting flow solver has been done using experimental results reported for a coaxial supersonic combustor, in which species profile at various axial locations has been compared. Present numerical solver is useful in simulating combustors of high speed air-breathing propulsion devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.