Abstract

High speed milling of hard alloy steels utilized in dies and molds is a highly demanding operation. The finite element model was developed to investigate the high speed machining of alloy cast iron which is used in auto panel dies. The modified Johnson-cook constitutive model was used to model the complex dynamic material behavior, a damage evaluation law based on Cockroft and Latham model was used to simulate the ductile fracture of alloy cast iron. The crack initiation and propagation was simulated explicitly using an explicit FEM code. Simulation results showed that the chip morphology transited from continuous to saw-tooth chip with increasing cutting speed, cutting force decreased when increasing the cutting speed, which provide a useful understanding of chip formation process in high speed machining of alloy cast iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.