Abstract

This papers deals with the high-density plasma-arc processing of FePt nanoparticle films. For short processing times, different materials, and multiple length scales of the system considered, the estimation of the optimum combination of process parameters is a difficult task. The process parameters can be obtained efficiently from a combined experimental and computational process analysis. The development of a computational methodology for plasma-arc processing is presented. Data on material properties are used to simplify the analytical model. An effective extinction coefficient was used to describe the absorption, of the radiation into the nanofilm. Experimental data for the surface temperature of the FePt nanofilm were obtained by infrared measurements. Parameters needed for the energy transport model were identified based on measured temperature data. The model presented can be used to for mulate process schedules for given time-temperature constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call