Abstract

The aim of the present study is to numerically investigate the combustion characteristics of Heavy Fuel Oil (HFO) and NOx emissions inside a Calciner used in cement industry. The combustion model was based on the conserved scalar (mixture fraction) and prescribed Probability Density Function (PDF) approach. The (RNG) k-ε turbulence model has been used. The HFO droplet trajectories were predicted by solving the momentum equations for the droplets using Lagrangian treatment. The radiation heat transfer equation was solved using P1 method. A swirl number greater than 0.6 was found to be optimal for good combustion characteristics and NOx emissions concentration. Meanwhile, it was found that the HFO viscosity value assumption has a significant effect on the injection velocity and must be considered as a function of temperature during the analysis as this will significantly affect the combustion characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.